Alterations in the rheological flow profile in conduit femoral artery during rhythmic thigh muscle contractions in humans.

نویسندگان

  • Takuya Osada
  • Göran Rådegran
چکیده

The present study examined the rheological blood velocity profile in the conduit femoral artery during rhythmic muscle contractions at different muscle forces. Eight healthy volunteers performed one-legged, dynamic knee-extensor exercise at work rates of 5, 10, 20, 30, and 40 W at 60 contractions per minute. The time and space-averaged, amplitude-weighted mean (V(mean)) and maximum (V(max)) blood flow velocities in the common femoral artery were measured during the cardiosystolic phase (CSP) and cardiodiastolic phase (CDP) by the Doppler ultrasound technique. The V(max)/V(mean) ratio was used as a flow profile index, in which a ratio of approximately 1 indicates a "flat velocity flow profile" and a ratio significantly >1 indicates a "parabolic velocity flow profile." At rest, the V(max)/V(mean) ratio was approximately 1.3 and approximately 1.8 during the CSP and CDP, respectively. The V(max)/V(mean) ratio was higher (p < 0.01) during the CDP than during the CSP, both at rest and at all work rates. The V(max)/V(mean) ratio during the CSP was higher (p < 0.01) at 30 and 40 W compared to at rest. The V(max)/V(mean) ratio during the CDP was lower (p < 0.05) at 5 and 10 W compared to at rest. There was a positive linear correlation between blood flow and incremental work rates during both the CSP and CDP, respectively. Thus under resting conditions, the findings indicate a "steeper" parabolic velocity profile during the CDP than during the CSP. The velocity profile during the CDP furthermore shifts to being less "steep" during rhythmic muscle contractions at lower intensities, but to being reelevated and normalized as at rest during higher intensities. The "steepness" of the parabolic velocity profile observed during the CSP at rest increased during muscle contraction at higher intensities. In conclusion, the blood velocity in the common femoral artery is parabolic both at rest and during exercise for both the CSP and CDP, indicating the persistence of laminar flow. The occurrence of any temporary slight disturbance or turbulence in the flow at the sight of measurement in the common femoral artery does consequently not induce a persisting "disturbed" and fully flat "plug-like" velocity profile. Instead, the "steepness" of the parabolic velocity profile is only slightly modified, whereby blood flow is not impaired. Thus the blood velocity profile, besides being influenced by the muscle contraction-relaxation induced mechanical "impedance," seems also to be modulated by the cardiac- and blood pressure-phases, consequently influencing the exercise blood flow response.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Assessment of voluntary rhythmic muscle contraction-induced exercising blood flow variability measured by Doppler ultrasound

Given recent technological developments, ultrasound Doppler can provide valuable measurements of blood velocity/flow in the conduit artery with high temporal resolution. In human-applied science such as exercise physiology, hemodynamic measurements in the conduit artery is commonly performed by blood flow feeding the exercising muscle, as the increase in oxygen uptake (calculated as a product o...

متن کامل

Measurement of the exercising blood flow during rhythmical muscle contractions assessed by Doppler ultrasound: Methodological considerations

Given the recent technological developments, ultrasound Doppler can provide valuable measurements of arterial blood flow with high temporal resolution. In a clinical setting, measurements of hemodynamics is used to monitor, diagnose and manage changes in blood velocity profile for cardiac valve disease, relatively large vessel stenosis and other cardiovascular diseases. In health science and pr...

متن کامل

Human femoral artery diameter in relation to knee extensor muscle mass, peak blood flow, and oxygen uptake.

It is not known whether the diameter of peripheral conduit arteries may impose a limitation on muscle blood flow and oxygen uptake at peak effort in humans, and it is not clear whether these arteries are dimensioned in relation to the tissue volume they supply or, rather, to the type and intensity of muscular activity. In this study, eight humans, with a peak pulmonary oxygen uptake of 3.90 +/-...

متن کامل

Erythrocyte and the regulation of human skeletal muscle blood flow and oxygen delivery: role of circulating ATP.

Blood flow to contracting skeletal muscle is tightly coupled to the oxygenation state of hemoglobin. To investigate if ATP could be a signal by which the erythrocyte contributes to the regulation of skeletal muscle blood flow and oxygen (O2) delivery, we measured circulating ATP in 8 young subjects during incremental one-legged knee-extensor exercise under conditions of normoxia, hypoxia, hyper...

متن کامل

Time course of brachial artery diameter responses to rhythmic handgrip exercise in humans.

OBJECTIVE Whether the dimensions of conduit arteries contribute to the time course of change in blood flow during voluntary rhythmic exercise, and the mechanisms governing such a response in humans, are not known. METHODS The time course of change in the vascular and blood flow dynamics in the brachial artery during the transition between rest and 5 min of rhythmic handgrip exercise was asses...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Japanese journal of physiology

دوره 55 1  شماره 

صفحات  -

تاریخ انتشار 2005